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Abstract. We calculate complete �ssion potential-energy surfaces versus �ve shape
coordinates: elongation, neck diameter, light-fragment deformation, heavy-fragment
deformation, and mass asymmetry for even nuclei in the range 82 � Z � 100. The
potential energy is calculated in terms of the macroscopic-microscopic model with
a folded-Yukawa single-particle potential and a Yukawa-plus-exponential macroscopic
model in the three-quadratic-surface parameterization. The structure of the calculated
energy landscapes exhibits multiple valleys leading to di�erent scission con�gurations.
The properties of these valleys and the saddle-points at the beginning of these valleys
can be directly related to bimodal �ssion properties observed in the radium region, in
the light-actinide region, and in the fermium region 1�4). The rms deviation between
calculated and experimental �ssion-barrier heights is only 1.08 MeV for 31 nuclei from
70Se to 252Cf.

INTRODUCTION

When a heavy nucleus divides into two fragments in nuclear �ssion, two key

aspects of the process have challenged researchers since the discovery of �ssion

more that 60 years ago. First, what is the threshold energy for the reaction and,

second, what are the shapes involved in the transition from a single nuclear system

to two separated daughter fragment nuclei? These two questions are intimately

connected. The energy of a nucleus as a function of shape de�nes a landscape in a

multi-dimensional deformation space. It is the energy of the lowest mountain pass,

or saddle-point, in this landscape, connecting the nuclear ground state with the

region corresponding to separated fragments that represents the threshold energy

of the �ssion process.



ASYMM. 

SYMM. 

226Ra(d,p)227Ra → f 

Bn 

5 10 15 20 
10 − 5 

10 − 4 

10 − 3 

10 − 2 

Excitation Energy E * (MeV) 

10 − 5 

10 − 4 

10 − 3 

10 − 2 

F
is

si
on

 P
ro

ba
bi

lib
ty

 Γ
f /

 Γ n
 

FIGURE 1. Fission probability data show di�erent thresholds for mass-asymmetric and

mass-symmetric �ssion near 227Ra. The �gure is based on a �gure in Ref. 1).

However, despite many �ssion potential-energy-surface calculations over the years
certain features of the �ssion process have remained unexplained. For example:

1. Nuclei near 228Ra exhibit two �ssion modes. We show in Fig. 1 an example of
the extensive data obtained in Ref. 1). In one mode, with the lower threshold
energy, the fragment mass distribution is asymmetric and the fragment total
kinetic energy is about 10 MeV higher than in the other, symmetric mode.
The kinetic energies indicate that the scission con�guration is more compact
for the asymmetric mode than for the symmetric mode. From the totality of
the data Ref. 1) concludes: \Thus it seems that after the gross determination of
the symmetric or asymmetric character of �ssion made already at the barrier,
the two components follow a di�erent path with no or little overlap in the
development from the barrier to the scission con�guration."

2. Most actinide nuclei near the line of �-stability undergo mass-asymmetric
�ssion. From Th to Fm the heavy fragment mass is close to 140, with the
remainder of the mass in the light �ssion fragment.

3. Near the far end of the actinide region �ssion properties change suddenly and
sometimes exhibit a two-mode character in the same nucleus. For example, the
fragment mass distribution changes abruptly from mass-asymmetric for 256Fm
to mass-symmetric for 258Fm along with a correlated increase in the fragment
total kinetic energy (TKE) by about 35 MeV. But 258Fm also exhibits the
asymmetric mode with lower TKE with a small probability: �ssion of such
nuclei is characterized as bimodal.

Over the past decades many calculations based on 1000 or so grid points have
been presented. However, to properly describe the evolution of a single nuclear



shape into two fragments of di�erent mass and deformation, for example one spher-
ical 132Sn-like fragment and one deformed fragment, we have concluded that com-
plete deformation spaces based on at least �ve independent shape parameters are
required 5). This leads to multi-million grid-point spaces.

SHAPE PARAMETERIZATION

Because fragment shell e�ects strongly inuence the structure of the �ssion
potential-energy surface long before scission, often in the outer saddle region, it is
crucial to include in calculations the nascent-fragment deformations as two indepen-
dent shape degrees of freedom. In addition, elongation, neck diameter, and mass-
asymmetry shape-degrees of freedom are required, at a minimum, to adequately
describe the complete �ssion potential-energy surface. For nascent-fragment defor-
mations we choose spheroidal deformations characterized by Nilsson's quadrupole
� parameter. This single fragment-deformation parameter is su�cient because
higher-multipole shape-degrees of freedom are usually of lesser importance in the
�ssion-fragment mass region below the rare earths.
The three-quadratic-surface parameterization (3QS) is ideally suited for the

above description. 6) In the 3QS the shape of the nuclear surface is speci�ed in
terms of three smoothly joined portions of quadratic surfaces of revolution. Us-
ing this parameterization we here construct, calculate, and investigate complete
�ve-dimensional spaces with 2 610 885 grid points as illustrated in Fig. 2.
A common notation used to characterize the fragment mass asymmetry of a

�ssion event is MH=ML where MH and ML are the masses of the heavy and light
�ssion fragments respectively. For the purpose of grid generation for the potential-
energy calculation it is convenient to relate a mass-asymmetry shape degree of
freedom for the pre-scission nucleus to the �nal �ssion-fragment mass asymmetry
in some fashion, although the �nal mass division, strictly speaking, cannot be
determined from the static shapes occurring before scission. However, the exact
nature of our de�nition of mass asymmetry for a single shape has little e�ect on
the calculated saddle-point energies and shapes because our �ve-dimensional grid
covers all of the physically relevant space available to the 3QS parameterization,
regardless of how we choose to de�ne a \mass-asymmetry" coordinate. In order
to obtain a de�nition of mass asymmetry that is meaningful close to scission, and
equations that are reasonably simple to work with for the purpose of grid-point
generation, we de�ne an auxiliary grid mass-asymmetry parameter �g

�g =
M1 �M2

M1 +M2

(1)

where M1 and M2 are the volumes inside the end-body quadratic surfaces, were
they completed to form closed-surface spheroids. Thus

�g =
a21c1 � a22c2
a21c1 + a22c2

(2)
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FIGURE 2. Five-dimensional shape parameterization used in our potential-energy calcula-

tion. Di�erent colors indicate the three di�erent quadratic surfaces of the shape parameter-

ization used in our calculation. The �rst derivative is continuous at the intersections of the

surfaces. For the nascent spheroidal fragments we characterize the deformations by Nilsson's

quadrupole � parameter. Shapes corresponding to certain quadrupole moments do not exist

for speci�c combinations of the other shape parameters. For example, zero quadrupole mo-

ment cannot be realized for shapes with very deformed ends. In our grid there exist 156 615

such \unphysical" points. Thus, we are left with 2 610 885 shapes for which we actually

calculate the potential energy.

where a denotes the transverse semi-axis and c the semi-symmetry axis of the left
(1) and right (2) quadratic surfaces of revolution. With this de�nition we select 20
coordinate values corresponding to

�g = �0:02 : : : (0:02) : : : 0:36 (3)

We have closely spaced the asymmetry coordinate so that we will be able to spot
favorable saddle-point shapes that may not appear in a more sparsely spaced grid.
For 240Pu the values 0.00, 0.02, and 0.36 of the mass-asymmetry coordinate �g

correspond to the mass divisions 120/120, 122.4/117.6, and 163.2/76.8, respectively.



Because of the intuitive appeal of the notation MH=ML we use it below to char-
acterize the \asymmetry" of a single shape. We then connect MH and ML to �g
through

MH = A
1 + �

g

2
and ML = A

1� �
g

2
(4)

for a nucleus with A nucleons. For shapes with a well-developed neck the ratio
obtained with this de�nition can be expected to be close to the �nal fragment
mass-asymmetry ratio. We cannot conveniently use M1 and M2 to designate the
�nal fragment mass asymmetries because they do not exactly sum up to the total
nuclear volume or mass. Equation (4) simply represents a scaling of M1 and M2 so
that their sum after scaling adds up to the total mass number A.

ANALYSIS OF FIVE-DIMENSIONAL SPACES

It is a common misconception that the structure of a multi-dimensional potential-
energy function can be determined by calculating and displaying the function versus
two shape variables, for example, �2 and �3 where the function has been \mini-
mized" with respect to additional multipoles such as �4, �5, �6 and �7.
Figure 3 illustrates, in two dimensions, some of the di�culties that occur in

such a search for the relevant �ssion threshold saddle points in a multidimensional
potential-energy landscape. Let � represent a coordinate in the �ssion direction
and � all other coordinates and furthermore let the blue area at � = �100 and
� = 6:0 represent the second minimum in the �ssion potential energy surface. And
let the blue area to the right represent the valley of separated �ssion fragments. In
many calculations based on \minimizations" with respect to additional coordinates
the procedure would now be to increase the �ssion coordinate � by some increment,
which for clarity we choose to be as large as 40, while keeping the additional shape-
degrees of freedom �xed. This would take us along the initial part of the thin
horizontal line to � = �60 and � = 6:0. Starting from this position the energy
would now be minimized for �xed � = �60. This would take us down to the large
black dot on the dot-dashed line. The process would then be repeated with the
result that the energy would be obtained for the succession of black dots on the
dot-dashed line. Thus the energy that is obtained is the energy along the dot-
dashed line. In our example here all the shape coordinates along this trajectory
would vary continuously and no suspicion may arise that the saddle point found,
in the region of the red arrow, is not the true saddle point, that is, it is not the
lowest pass leading to the �ssion valley of separated fragments to the right in the
�gure. A minimum-energy trajectory should instead take us over the saddle-points
identi�ed by the green arrows in the �gure. We can easily \see" this in a two-
dimensional case as the example here, but in a higher-dimensional space it takes a
clever algorithm to identify all of the relevant structure. This requirement led to
the water-ow algorithm described below.
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FIGURE 3. Maxima (+), minima (�), and saddle points (arrows or crossed lines) of

a two-dimensional function. As discussed in the text it is not possible to obtain a

lower-dimensional representation of this surface by \minimizing" with respect to the \ad-

ditional" � shape-degree of freedom.

A numerical algorithm that locates the saddle points by the criteria that all
�rst derivatives be zero and that the second derivatives have the appropriate signs
would locate the saddles marked by crossed lines in the upper part of the �gure
in addition to the saddles we have already discussed. It would then be di�cult to
determine if any of these represented the lowest mountain pass between the second
minimum and the blue area to the right representing the �ssion valley of separated
fragments. However, as we will show the water-ow method simply bypasses these
saddle points.

It is also a common misconception that constrained self-consistent calculations,
for example HF or HFB calculations with Skyrme or Gogny forces 7�9) automati-
cally take into account all non-constrained variables. For the application to saddle-
point determination this is incorrect. A self-consistent calculation constrained in
one variable, for example Q2, would have di�culties similar to those discussed
above.

In addition, it is of interest to note that in calculations where the potential energy
is displayed as contour diagrams versus two shape variables and in which the energy
is minimized with respect to additional multipoles, only relatively few points are



required to perform a minimization with respect to, say, 3 additional multipoles,
about 30 or so. If the two-dimensional contour diagram is based on 10 by 10 points
then only 3 000 points are considered in the calculation. In contrast, we �nd that
to adequately investigate the structure associated with �ve simultaneous shape-
degrees of freedom almost 3 000 000 grid points, that is, 1000 times more points
than earlier calculations purporting to be multi-dimensional are required.

The technique we use here to investigate the structure of the multidimensional
surface is to employ imaginary water ows 5;10) in the calculated 5-dimensional po-
tential energy surface. For example, we imagine that we stepwise ood, in intervals
of 1 MeV, the second minimum with water. During the ooding process we check
at what water level a preselected \exit" grid point that is clearly in the �ssion valley
near scission gets \wet". When this happens, then the water level has passed the
threshold energy level for �ssion. We can determine the saddle-point energy to de-
sired accuracy by repeating the �lling procedure with successively smaller stepwise
increases of the water level. In the second such iteration we only need to start the
�lling procedure at 1 MeV below the level for which the exit point became wet in
the �rst iteration with its 1 MeV stepwise increases in the ooding level, and we
then use a 0.1 MeV stepwise increase in the water level. Once the exit point again
gets ooded we can again repeat the procedure with a smaller stepwise water-level
increase until we have determined the saddle-point energy to desired accuracy. The
saddle-point shape can also be obtained from this procedure.

Once the threshold energies for �ssion have been identi�ed, it is of interest
to establish if structure e�ects in the potential energy provide a mechanism for
multi-mode �ssion, such as the well-known three-peaked mass distribution in 228Ra
�ssion 1). To look for such structures we ask if there are valleys of distinctly dif-
ferent character running in the �ssion direction of increasing Q2. For 10 or more
�xed Q2 values beyond the outer saddle region, we determine all minima in the
remaining 4-dimensional space of the two fragment deformations, neck size and
mass asymmetry. We �nd that there are usually two (but sometimes more) dis-
tinct valleys in the region beyond the second saddle region, one corresponding to a
mass asymmetry �g of about [140� (A� 140)]=A and one corresponding to mass
symmetry �g = 0. To understand the signi�cance of these valleys it is necessary
to study their interconnections in the �ve-dimensional deformation-energy space.

Variations of the ooding algorithm allow us to determine that separate saddle
points provide entries to the two valleys and the respective energies of these saddle
points. Once the lowest saddle has been determined we may block the water ow
across this saddle by building an imaginary dam across the saddle region. We can
also totally block the water ow beyond a selected maximum Q2. This prevents
water from owing down one valley and up \the back way" into the other valley.
To determine the height of the ridge between the two valleys along their entire
length we study for each �xed Q2 the remaining 4-dimensional space in which the
two valleys correspond to two minima and the ridge to the saddle separating them.
We use the ooding algorithm in four dimensions to localize this saddle/ridge.
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FIGURE 4. Potential-energy valleys and ridges and corresponding nuclear shapes for 228Ra.

The �rst point on each of the two curves with the label \valley" are actually saddle-points

at the entrance to the valley that emerges beyond the saddle point. It is of interest to note

that the entrance to the symmetric valley is slightly asymmetric. The subsequent points in

this valley correspond to symmetric or very nearly symmetric shapes. The entry saddle-point

to the symmetric valley is 1.13 MeV higher than the entry saddle-point to the asymmetric

valley. The highest point on the separating ridge is 2.47 MeV higher than the symmetric

saddle. The thin dashed line represents the threshold energy for �ssion. All energies are given

relative to the spherical macroscopic energy.

RESULTS

We have calculated �ve-dimensional potential-energy surfaces for 138 even-even
nuclei from Pb to Fm. We are currently subjecting these surfaces to various types
of imaginary water-ow analyses as discussed in the previous section.
As examples of the structures we have found in the calculated 5-dimensional

surfaces we show in Figs. 4 and 5 some �ssion-valley and separating-ridge features
obtained for 228Ra and 232Th. The �rst point on the �ssion-valley potential-energy
curves in Figs. 4 and 5 is the saddle point for entry into the particular valley.
The nuclear shapes corresponding to the saddle points are shown to the left in the
�gure. Shapes corresponding to the symmetric and mass-asymmetric valleys at
Q2 = 86 b are shown to the right. Note that the shape corresponding to the entry

to the mass-symmetric valley is slightly mass-asymmetric. The thin dashed line is
the calculated threshold potential energy for �ssion which, to be consistent with
the other curves, is given relative to the spherical macroscopic energy.
The calculated structure of the potential-energy surface therefore is consistent

with the observed bimodal �ssion features in this region of nuclei 1;2). The high
ridge separating the two valleys for 228Ra is peaked at 2.47 MeV above the en-



232Th Potential-Energy-Surface Structure 
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FIGURE 5. Potential-energy valleys and ridges and corresponding nuclear shapes for 232Th.

The �rst point on each of the two curves with the label \valley" are actually saddle-points

at the entrance to the valley that emerges beyond the saddle point. It is of interest to note

that the entrance to the symmetric valley is slightly asymmetric. The subsequent points in

this valley correspond to symmetric or very nearly symmetric shapes. The entry saddle-point

to the symmetric valley is 2.17 MeV higher than the entry saddle-point to the asymmetric

valley. The highest point on the separating ridge is 1.56 MeV higher than the symmetric

saddle. The thin dashed line represents the threshold energy for �ssion. All energies are given

relative to the spherical macroscopic energy.

trance saddle to the symmetric valley. It therefore keeps the mass-symmetric and
mass-asymmetric modes well separated up to scission, which is consistent with the
experimentally observed data discussed in the introduction. Compare also with
Fig. 1. Our results in Fig. 4 are also consistent with the observed total fragment
kinetic energies which are about 10 MeV higher for asymmetric �ssion than for
symmetric �ssion for several nuclei in this region 1).

For 232Th the lower separating ridge, peaked at 1.56 MeV above the entrance
saddle to the symmetric valley, allows the symmetric component to partially revert
back to the asymmetric valley before scission for 232Th. Therefore, there is only a
very weak symmetric �ssion component in low-energy �ssion of 232Th. We �nd that
the existence of at least two paths in the �ve-dimensional surface is a general result
for nuclei in this region and we are now studying their relative importance over
the large range of nuclei for which we have calculated potential-energy surfaces.
We note that experimental �ssion data in the light-actinide region are currently
interpreted in terms of two �ssion paths, one mass symmetric and the other mass
asymmetric. The saddle leading to mass-symmetric division is observed to be 1 to
2 MeV higher than the saddle leading to mass-asymmetric division for nuclei in
this region, in excellent agreement with our calculated potential-energy surfaces.
Also, the experimental total fragment kinetic energies are higher in asymmetric



Fermium Bimodal Saddle-Point Shapes
Graphics by Peter Möller

256Fm: Higher outer saddle (Towards high TKE) 

εf1 = 0.1500   εf2 = 0.0500   MH/ML = 128.0/128.0

256Fm: Lowest outer saddle (Towards low TKE) 

εf1 = 0.1500   εf2 = 0.2000   MH/ML = 145.9/110.1

258Fm: Higher outer saddle (Towards low TKE) 

εf1 = 0.1000   εf2 = 0.1000   MH/ML = 152.2/105.8

258Fm: Lowest outer saddle (Towards high TKE) 

εf1 = 0.0000   εf2 = 0.1000   MH/ML = 129.0/129.0

FIGURE 6. Bimodal saddle-point shapes for 256Fm and 258Fm.

�ssion than in symmetric �ssion. These observations 2;3) are consistent with the
compact and elongated shape con�gurations that we obtain in the corresponding
�ssion valleys.
Turning to the heavy actinides, nuclei in the region near 258Fm also ex-

hibit bimodal features in �ssion as discussed in Ref. 4). We have earlier tenta-
tively identi�ed bimodal structures in calculated two-dimensional potential-energy
surfaces 11;12), but only now can we verify that these interpretations are still valid
when the calculation is taken from two to �ve dimensions. In the Fm region we
have used one of the imaginary water-ow techniques described previously, namely
the dam method, to �nd alternative saddle points that are higher in energy than
the lowest threshold saddle point. For 256Fm and 258Fm we �nd the two distinct
classes of saddle points shown in Fig. 6. For 256Fm the shape of the lowest saddle
indicates it corresponds to normal, low-TKE �ssion similar to what is observed in
�ssion of slightly lighter actinides. However, another saddle point exists, which we
calculate to be 0.30 MeV higher than the lower saddle point. This may correspond
to �ssion into compact scission con�gurations with high kinetic energies. For 258Fm
the latter type of saddle-point becomes the lowest saddle point. Thus, we repro-
duce the experimentally observed transition point between asymmetric low-TKE
�ssion and symmetric high-TKE �ssion as observed experimentally 4).
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FIGURE 7. Calculated (open symbols) and measured (closed symbols) average mass di-

vision in asymmetric �ssion for a sequence of even isotopes of Th. The error bars on the

calculated points correspond to the spacing of mass asymmetry values on the multidimensional

shape-coordinate grid. The data is for spontaneous �ssion when it is available, otherwise data

for low-energy induced �ssion is used. The results reproduce the experimental observation of

a heavy fragment at mass number A � 140 and a light fragment with mass corresponding to

the remainder of the original nucleus. However, deviations from this rule of thumb are also

reproduced by the calculations.

As pointed out in the Introduction, it is a long-standing observation that in bi-
nary �ssion actinide nuclei preferentially divide into one fragment of about mass
140 and a complementary, smaller fragment of mass A� 140, where A is the mass
number of the original nucleus. We show in Fig. 7 our calculated results for the
fragment masses for the mass-asymmetric valley in �ssion for seven thorium iso-
topes. The data are from Refs. 13�15). For all isotopes we have identi�ed the �ssion
valley corresponding to mass-asymmetric �ssion at Q2 = 99 b. The value of the
mass-asymmetry coordinate �g at the valley bottom directly yields the mass of the
heavy and light �ssion fragments according to Eq. (4). The \valley oor" corre-
sponds to a local minimum in the four-dimensional space remaining when Q2 is
�xed at a speci�c value. In Fig. 8 we have plotted the charge asymmetry for some
isotopes of Th and U, cf. Ref. 15). We observe that the charge of the heavy fragment
remains constant, whereas there is a substantial variation in the heavy-fragment
neutron number along the Th and U isotope chains.
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FIGURE 8. Calculated proton number and neutron number of the heavy �ssion fragment

of isotopes of Th and U compared to experiment for the mass-asymmetric �ssion mode. The

error bars correspond to the spacing of the mass-asymmetry shape coordinate.

Our results in this paper are based on calculations with the FRLDM 1992 param-
eter set 16). Because of our expanded and more realistic deformation space our cal-
culated barrier heights are systematically lowered relative to earlier, limited-space
calculations. To obtain optimum agreement with experiment a readjustment of the
FRLDM model parameters is therefore necessary. We have recently performed such
a readjustment of the FRLDM model parameters to nuclear ground-state masses
and barrier heights in the manner described in Ref. 16). We obtain an overall bar-
rier rms error of only 1.08 MeV and an overall mass model error of 0.759 MeV.
The new calculated and experimental barrier heights are listed in Table 1.

SUMMARY

Our current analysis of the new calculated potential energy landscapes in �ve
dimensions allows us to draw the following conclusions:

1. Multiple �ssion paths are found for most nuclei in the mass range considered.

2. For radium and light actinide nuclei two paths dominate: one mass-asymmetric
and one mass-symmetric. These paths correspond to di�erent �ssion modes,
such as those illustrated in Fig. 1 in the Introduction.



Table 1

Calculated \outer" barrier heights compared to experimental barrier data, after
readjustment of the macroscopic-model constants. For proton number below 80

the barriers are the macroscopic barriers. A typical experimental barrier
uncertainty is 1 MeV.

Z A E
exp

B Ecalc
B E

exp

B �Ecalc
B Z A E

exp

B Ecalc
B E

exp

B �Ecalc
B

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

34 70 39.4000 38.4792 0.9208 92 238 5.5000 5.6895 -0.1895
34 76 44.5000 44.7815 -0.2815 92 240 5.5000 6.4866 -0.9866
42 90 40.9200 41.7603 -0.8403 94 236 4.5000 4.5137 -0.0137
42 94 44.6800 45.1974 -0.5174 94 238 5.0000 4.5383 0.4617
42 98 45.8400 47.8580 -2.0180 94 240 5.1500 5.0469 0.1031
80 198 20.4000 22.1022 -1.7022 94 242 5.0500 5.7499 -0.6999
84 210 21.4000 22.2199 -0.8199 94 244 5.0000 6.4935 -1.4935
84 212 19.5000 20.4383 -0.9383 94 246 5.3000 7.1958 -1.8958
88 228 8.1000 7.8328 0.2672 96 242 5.0000 4.4339 0.5661
90 228 6.5000 6.9476 -0.4476 96 244 5.1000 5.1740 -0.0740
90 230 7.0000 6.0608 0.9392 96 246 4.8000 6.0138 -1.2138
90 232 6.2000 5.8163 0.3837 96 248 4.8000 6.6025 -1.8025
90 234 6.5000 5.5551 0.9449 96 250 4.4000 6.1782 -1.7782
92 232 5.4000 4.8495 0.5505 98 250 3.6000 6.0674 -2.4674
92 234 5.5000 5.0518 0.4482 98 252 4.8000 5.8170 -1.0170
92 236 5.6700 5.1745 0.4955

3. The di�erence in energy between the symmetric and asymmetric saddle points
in our calculated potential-energy surfaces is one to two MeV, which is con-
sistent with the experimentally deduced di�erences.

4. The shapes we calculate for nuclei evolving in the mass-asymmetric and mass-
symmetric valleys are consistent with the total fragment kinetic energies ob-
served for these modes.

5. The long observed mass split in mass-asymmetric �ssion with an approxi-
mately constant heavy fragment mass near A = 140 is reproduced in our
calculations.

6. Calculated �ssion-barrier heights agree very well with experimentally ex-
tracted barriers for nuclei from 70Se to 252Cf.

Except for Table 1 and the attendant discussion, these results have been ob-
tained in our standard �nite-range liquid-drop potential-energy model used for the
calculation of nuclear masses. No change in the model or its parameters have been
made in the current calculation, relative to its 1992 speci�cation in Ref. 16).



The calculations on which the results in this paper are based were carried out
on the cluster of 4 CPUs at the TANDEM accelerator in JAERI in the winter of
1998{1999 and subsequently on the 140 processor AVALON cluster at Los Alamos.
Results of the investigations at JAERI are discussed in Ref. 5). This research is
supported by the US DOE under contract W-7405-ENG-36.
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